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EIGENFUNCTIONS WITH FEW CRITICAL POINTS
DMITRY JAKOBSON & NIKOLAI NADIRASHVILI

Abstract

We construct a sequence of eigenfunctions on T2 with a bounded number
of critical points.

S. T. Yau raised a question about the number and distribution of
critical points of eigenfunctions of the Laplacian on a Riemannian man-
ifold ([4, # 76], [5, # 43]). In [6] he investigated this problem in two
dimensions and proved, in particular, that under certain curvature as-
sumptions every eigenfunction has a critical point where the critical
value is uniformly bounded. Here we prove

Theorem 1. There exists a metric on the two-dimensional torus
and a sequence of eigenfunctions such that the corresponding eigenvalues
go to infinity but the number of critical points remains bounded.

This answers in the negative the question raised in [4]; however, our
metric is quite special, and it is possible that for a generic metric the
number of critical points increases with the growth of the eigenvalue.

The main idea of our construction is to consider a sequence of eigen-
functions f,(z,y) = sin(nz + y) (on T? with the flat metric) whose
critical points lie on a union of two line segments, and then change a
metric in such a way that instead of two critical “ridges” we shall have
a bounded number of critical points.

We counsider a Liouville metric (cf. [3])

(1) q(z) (da® + dy?)
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on the torus T? = {(z,y) : 0 < z,y < 2r}. Here ¢ is a smooth periodic
function whose properties we shall specify later. Joint eigenfunctions of
the Laplacian A = (1/q(x))(0%/0z? + 8 /0y*) and 9/dy have the form

fla,y) = plz) ™, meL,
where ¢ satisfies an equation (cf. [3, (4.3)])
¢'(@) + (Ma(z) —m?) p(z) = 0.
In the rest of the paper we shall choose m = 1. Accordingly, ¢ satisfies
(2) ¢"(x) + (Ag(z) = 1) p(z) = 0.

We choose ¢ to be a periodic function of period 7/2 and let ¢ satisfy
(2) on [0,7/2] with boundary conditions

(3) ¥'(0) = ¢(r/2) = 0.

Then the function ¢; defined by

o(z), z €[0,7/2],

o = el =), weln/2,q),

(4) p1(x) —p(z —n), =€ [r,3n/2),
[

©(2r —x), x € [3n/2,2n].
and its shift o defined by

(5) pa(r) = p1(z+7/2)

are two linearly independent solutions of (2) on [0,27] (we are consid-
ering  mod 27 and using the periodicity of q).

We denote the spectrum of (2) on [0, 7/2] with boundary conditions
(3) by 0 < A1 < A2 <... Then every ); is an eigenvalue of multiplicity
two of the equation (2) on [0,2n] with periodic boundary conditions
(the corresponding eigenfunctions ¢1 2(j) are given by (4) and (5)). We
next investigate the function g;(x) defined by

(6) gi(@) = p1(7)(@)° + p2(5)(2)*.

Lemma 2. There exists C > 0 such that for A; large enough the
function gj(x) is monotonic outside the union of (C/\;)-neighborhoods
of the critical points of q(x).
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Proof. The solutions 9;(z) = p1(j)(x) + @ p2(j)(z) of the equatlon
(2) can be asymptotically expanded int =V (cf. [1], [2, p- 34]). Wi
can make a change of variable (cf. [2, p. 32])
P(z) = exp{ / Z tFay(s) }
k=—1

in the equation

P+ (g — 1)y = 0.

Here ¢;(0) = 1 and

b= O

Zkffl _7 (0)

is the normalization constant.

Further substitution ¢'/¢% = w reduces the equation above to the
Ricatti equation

w +w?+t2gx)—1 = 0

forw =2, t Fay(z) from which aj-s can be found inductively from
the asymptotic expansion in t.

In particular, a?; + ¢ = 0. We assume that g(z) is not identically
constant and that

q(z) > 1,

so we can choose
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The next few terms are given by

( @y = _q,/(4Q)7
o= (=) (1/24'7%) = 5(¢)*/(326°%) + ¢"/84%) ,
az = (¢" —44¢")/(16¢°) — 9¢'q"/(32¢%) + 15(¢')*/(644"),
_ 6q" — """ 28¢'¢"" + 19 M2 _50(q")2
ay= (14 80" 20 (q2) (4)
8¢3/ 4q 164
™) 1105(¢")*  221(¢')*¢"
2564¢* 32¢3 ’
B q(qlllll _ 8qlll + 16ql) + 17qllqlll + 10qlqllll _ 54qlqll
= 6442
q
N 3¢'(80(¢')* — 102(¢")* — 75¢'¢"")
2564°
1695(¢)* (294" — (¢)*)
\ 1024¢7

Let hj(z) be a constant multiple of the logarithmic derivative of the
function g;j(x) = () ¥;(z),

g;(z)
2d;g;(x) -

It has an asymptotic expansion in A; = t? given by

hj(z) =

(8) hj(z) = Y an(z) A"

k=0

The error term in the n-term expansion is O(A; "), uniformly in z and
g (cf. [1], [2]). The lemma now follows from (7) and (8). q.e.d.

We next investigate the behavior of g; () in the C'/A;-neighborhoods
of the critical points of ¢(z). We assume that ¢(z) = ¢(7/2 — z) and
that ¢ has a unique minimum at 0 and a unique maximum at 7/4 on
[0,7/2). The Taylor expansion of ¢ at a critical point 2y has the form

o0
9) q(zo +2) = ao(l + a1z’ + Zaijj),
i=2

where ag > 0,a; > 0at g = 0and a9 > 0,a; < 0at o = 7/4. It follows
from the symmetries of ¢ that g;(z) = g;(—z), gj(v/4—2z) = g;(n/4+z).
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We next differentiate (8) (cf. [1], [2]) and substitute (9) into the
resulting expression to study the asymptotic expansions of h(z) = h'(z)
(in  and Aj = A) in C/\j-neighborhoods of 2y = 0 and zy = 7/4. We
get

(10) B (zo +x) = bi(A) + bo(N)z? + O(|z[* + \73),

uniformly in j; here

(o, L [B2-a 9
=79 T 2 8
1 2 4 24a9 — 54aq, — 15302
N Sy — a1 + 45a3 n a1(324a9 — 5daq 53af) 7
()\ao)2 4 16
by a? 1 30a3 — 21a3
S 3251_@_'_)\—0 [a%—az—l%laz-l-fl
1 3a2 3225a%
+— ) |:15( 7a4) —a + 71 + 210,:;’ + 39 L

(Aa
.3
1

(12243 — 48a1as — 399atas + 280a1a3)] :

\

The function ¢(z) was chosen so that a; # 0 in (9). It follows that
in C'/\j-neighborhoods of the critical points

(11) W(zo + ) = _T‘“ + O(1/\)).

If g; had two or more critical points in a C'/Aj-neighborhood of a critical
point of g, then h; would have at least two zeros there and h;- would
vanish, contradicting (11) for large enough X;. Therefore g; has at most
one critical point in every such neighborhood for large A;. Together
with Lemma 2 this proves

Lemma 3. The number of critical points of gj(x) is uniformly
bounded above.

We are now ready to prove the theorem. Let

(12) filz,y) = p1(5)(z)siny + @a(4) () cosy,

where ¢1(j)(x) are defined by (4) and (5). The function f;(z,y) is
equal to

(95 ()" sin(®;(2) +y),
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where ®;(z) is a continuous monotone function defined by

cos(®;(x)) = p1(j) (@) /(g5 ()2, sin(®;(2)) = 2(5)(2)/ (g (2))"/?

(® is monotone since a nonzero linear combination of 1 and 9 cannot
have a second order zero).
At a critical point (zg,yo) of f; we have

a .

5—2 = (95(2))"/? cos(@;(x) +y) = 0,
SO
(13) y+ ®;(z) =7/2+nk k € Z.
Also,

of;  gi()

- = ————— gin(P, =0

O 2(g; ()2 sin(®;(z) +y)

(we have used the equality cos(®;(z) +y) = 0). Accordingly, by Lemma
3, z can take a bounded number of values. Together with (13) this shows
that the number of critical points of f;(x, ) is uniformly bounded above,
and the proof is finished. qg.e.d.

Remark. One can show that for large A\; the eigenfunctions that
were constructed have exactly 16 critical points.
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